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1 Data Structures and Procedures

 

1.1 Haar Features 

 

Our final classifier relies primarily on Haar Features, although some of the labels use additional 

features like correlation. The Haar Feature, and Haar Feature List, was an important data 

structure in our code. Each Haar Feature is represented 

CvRect representing its rectangle, and an enum representing the feature type. We used the 

suggested 7 Haar Feature types (H, V, D, TL, TR, BL, BR), as well as 4 new ones (R, C, DD, DU) 

described below: 

 

R  

 

R = Rows 

C = Columns 

 

You’ll notice that DD and DU are 

because to compute the Haar Features most efficiently (especially when running multiple Haar 

Features on the same image), we precompute the Integral of the image and sample it at different 

points for each Haar Feature. Using the Integral to get the intensity at different points required us 

to use only rectangles to construct the shape of Haar features.

 

Haar Feature Lists are formatted with one Haar Feature per line

provided for us in the starter code. In the various stages of our program (feature generating, 

training, and running our classifier) we save and load Haar Feature lists very frequently!

Data Structures and Procedures 

Our final classifier relies primarily on Haar Features, although some of the labels use additional 

features like correlation. The Haar Feature, and Haar Feature List, was an important data 

structure in our code. Each Haar Feature is represented as an instance of the Haar class, with a 

CvRect representing its rectangle, and an enum representing the feature type. We used the 

suggested 7 Haar Feature types (H, V, D, TL, TR, BL, BR), as well as 4 new ones (R, C, DD, DU) 

         C       DD           DU 

DD = Diagonal, Down 

DU = Diagonal, up

You’ll notice that DD and DU are not straight diagonal lines, but are instead stair-like. That was 

because to compute the Haar Features most efficiently (especially when running multiple Haar 

Features on the same image), we precompute the Integral of the image and sample it at different 

oints for each Haar Feature. Using the Integral to get the intensity at different points required us 

to use only rectangles to construct the shape of Haar features. 

Haar Feature Lists are formatted with one Haar Feature per line—exactly the same as the fi

provided for us in the starter code. In the various stages of our program (feature generating, 

training, and running our classifier) we save and load Haar Feature lists very frequently!
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Our final classifier relies primarily on Haar Features, although some of the labels use additional 

features like correlation. The Haar Feature, and Haar Feature List, was an important data 

as an instance of the Haar class, with a 

CvRect representing its rectangle, and an enum representing the feature type. We used the 

suggested 7 Haar Feature types (H, V, D, TL, TR, BL, BR), as well as 4 new ones (R, C, DD, DU) 

 

like. That was 

because to compute the Haar Features most efficiently (especially when running multiple Haar 

Features on the same image), we precompute the Integral of the image and sample it at different 

oints for each Haar Feature. Using the Integral to get the intensity at different points required us 

exactly the same as the file 

provided for us in the starter code. In the various stages of our program (feature generating, 

training, and running our classifier) we save and load Haar Feature lists very frequently! 
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1.2 TreeData 

 

Both our Generate program and our Train program test lists of Haar Features against a large set of 

images, then they use a subset of those images to filter features, train decision trees, or set up 

CvBoost. To keep track of all the raw data produced by running images against Haar features in 

the early stages of Generate and Train, we designed a structure called TreeData. 

 

TreeData is similar to the data that we pass into CvBoost in that it has a 2-dimensional matrix of 

feature variables (indexed by image number and Haar feature number), a 1-dimensional matrix of 

“labels” or whether each image is in the positive or negative class, and a 1-dimensional matrix of 

suggested Threshold values for each Haar Feature. 

 

Because Haar Features and positive/negative labels per image differ between the five different 

labels (mug, stapler, scissors, clock, keyboard), we have one TreeData for each of the five labels. 

Each of the TreeData ultimately helps generate one Decision Tree or one CvBoost, as there is one 

of each per label. 

 

1.3 Decision Trees and Boosted Decision Trees 

 

In the milestone code, we wrote our own Decision Tree code in CClassifier. Each node in our 

Decision Tree chose the Haar Feature and Threshold with the highest information gain and split 

on it. Leaf nodes were nodes that had reached the maxDepth value or were homogeneously 

positive or negative. The decision tree wrote and read itself from files in a breadth-first fashion, 

and multiple decision trees were able to be written and read to the same file. 

 

After the milestone, we decided to use CvBoost to get much stronger results. When implementing 

CvBoost we had to restructure some of our code in order to format our variables into CvMats 

suitable for CvBoost, but overall it thankfully didn’t affect our code structure that much. We 

replaced our custom save and load code with CvBoost’s built-in save and load functions. Since we 

have one CvBoost per label and thus multiple CvBoosts, each Boost writes itself to a different file: 

the provided filename with the name of the label it pertains to affixed to it. 
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1.4 CObjects and CObject Clusters 

 

The most important data structure we used in Test (or CClassifier::run) was the CObject class 

provided for us. We did a variety of operations on the raw CObjects generated by our Decision 

tree or CvBoost, in order to filter them to get more accurate results. 

For one, we clustered together nearby CObjects so that we wouldn’t have redundant results. We 

used the CObject method overlap() as a quick way to figure out CObject similarity. 

 

2 Extensions and Experimental Results 

 

2.1 Generate: Choosing Haar Features 

 

2.1.1 Rationale for writing a Generate program 

 

The first step in our decision-making pipeline is choosing the Haar Features that will be 

considered when we build our decision tree from the set of all possible Haar Features. Since the 

original Haar Feature list given to us had only 57 features optimized for mug, we knew we had to 

come up with new feature lists, so we did so algorithmically. We came up with 5 different lists of 

effective Haar Features, one for each of the labels—mug, scissors, stapler, clock, keyboard.  

Initially we had 400,000 possible Haar features to start out with but then decided to increase the 

number of first images to test on from 12 to 24 so we had to go down to 150,000 Haar features to 

be able to compute efficiently on these images.  We increased the width and height multiples 

from values of 2 to new values of 4.  

 

To do this, we iterated through about 150,000 possible Haar features: 

• all x and y values in multiples of 2 

• all width and height values in multiples of 4 with a minimum of width + height ≥ 20 

• the original 7 suggested Haar Feature types + 4 unique new types of Haar features 

(described above) 
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We tested these 150,000 features on a small number of images (24 from each label), recording 

the raw values that they gave each image. Then, for each label, we took the average values each 

Haar feature gave images that matched the label (positive group) and images that did not match 

(negative group) and used the halfway point between these 2 averages as that feature’s threshold 

for classifying positive and negative for that particular label. 

 

Using this method of classifying images, we chose the 5000 Haar Features that independently 

gave us the most information gain when classified to the small set of images. 

 

2.1.2 Generating in Stages 

 

We then narrowed down this set of 5,000 Haar Features to 1,500 Haar Features by testing them 

for information gain on a larger number of images (repeating the process above, but starting with 

5000 Haar Features, and using a larger set of images), and then repeated again for a total of 5 

stages. In each stage we began with a large number of features, ended with a smaller number 

passed on to the next stage, and tested with an increasing number of images. Our final result was 

120 information-gain-optimized features for each label. 

 

The generated Haar features were initially very redundant. There were many groups of Haar 

features that all looked at the same part of the image, and probably wouldn’t be very useful as 

the split features in a decision tree (for example, the Haar Features “16 12 24 4 R” and “14 12 24 4 

R” were the top two in the “stapler 10” list—they tell us essentially the same information and 

would make the same split). We changed the algorithm to test features to see how useful they’d 

be given another feature—that is, how much information gain we get from a feature classifying 

images that had already been split into two lists by another feature. This algorithm was O(IF
2
) 

rather than O(F), since all features were tested against one another for this “dependent” 

information gain, and to compute information gain we need to consider the decision made on all 

images (hence the I term). Since the algorithm was quadratic with the number of features, we 

only used it with the 2
nd

 through 5
th

 stages, not the 1
st

 stage (which would have had a 

considerable time cost). For the 1
st

 stage we used our old O(IF) algorithm; you’ll notice this 

difference in the table below. 
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Stage 

# of Images per 

label, at most 

I 

# of Features 

considered 

F 

# of Features 

ranked 

R 

Running Time 

Formula 

Running Time 

(Relative) 

1 24 150,000 5,000 O(IF) 3,600,000 

2 70 5,000 1,500 O(IF
2
) 1,750,000,000 

3 200 1,500 600 O(IF
2
) 450,000,000 

4 600 600 300 O(IF
2
) 216,000,000 

5 2,000 300 120 O(IF
2
) 180,000,000 

 

2.1.3 Ratios 

 

We also varied the ratio of positive to negative images that we trained the Haar features on.  We 

kept this image ratio when we trained both the trees that we created and the boosting trees.  

When we decided to add a “Ratio” aspect to our decision tree (see section 2.2.2 below), we 

generated a different list of features optimized for each ratio. This is why in the final submission, 

we have many lists of features (for example, the feature list for clocks with positive-negative ratio 

1:10 is at “generated/clock10.txt”). 

 

 

2.2 Train: Training our CvBoost trees on Haar Features 

 

2.2.1 Preparing Variables 

 

Our method for training operates much like our method for choosing Haar Features, except the 

output is a fully structured decision tree (later a boosted tree) rather than just a list of useful 

features. 

 



 

9 

 

 

We ran the 120 Haar Features per label chosen by Generate (above) on the full training set of 

40,000+ images and recorded the raw values that they outputted. We first iterated through 

images, then labels, then Haar features. Iterating through images first was the most efficient; we 

precompute the image’s Integral and run all the Haar features on that integral, which entails 

extracting about 8-20 pixel values from the integral for each feature. (We originally were 

computing the Integral of the image every time we tested an individual Haar feature, which we 

learned was inefficient, so we restructured our code.) 

 

2.2.2 Choosing images based on a Ratio 

 

We then chose a subset of those images to include as training data for CVBoost. We didn’t want 

to include all 40,000 images for all the classifiers. We originally did this and it was problematic, as 

the classifier was weaker for some labels than others. For example, the label “clock” has 40 

images and the label “keyboard” has 400, thus 1 of every 100 images input into keyboard’s Boost 

tree had a positive response and 1 of every 1000 images input into clock’s Boost tree had a 

positive response. This discrepancy between 1:100 and 1:1000 made the tree output drastically 

different, so we decided to hold the ratio between positive responses and negative responses 

fixed. 

 

To do this, we defined a constant BOOSTING_RATIO. After running our Haar features but before 

providing data to CvBoost, we selected images that weren’t in the positive class (i.e. images that 

aren’t a mug for the mug Boost tree) with a small probability based on BOOSTING_RATIO, such 

that the ratio of positive to negative-class images selected for CvBoost was approximately 

1:BOOSTING_RATIO. 

 

We also choose the Haar features that had been trained with this image ratio for the input.  That 

way the decision tree and the Haar features had been trained on the same image ratio. 

 

With these images selected, we then populated CVMats with the appropriate data and ran 

Boosting. Running Boost and saving the final completes the training process. 
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2.2.3 CvBoost Parameters 

 

Finally, we tried different values for CvBoost’s numSplits and numRounds parameters. We had 

been using 10-12 as the maximum depth of our decision tree before we started using CvBoost, so 

we initially used numSplits = 10, numRounds = 5. That proved to not be very effective—other 

classmates told use they used smaller numSplits(their trees were more like stumps), and more 

numRounds to make up for it. We tried different values and ultimately ended up using numSplits 

= 5, numRounds = 50. 

 

 

2.3 Clustering: Grouping like observations 

 

We went through several different iterations of clustering techniques.  As we changed our 

decision tree and kept tweaking it, the clustering had to change to best fit the relative output of 

each of these tree iterations. We had some parameters which we could tune the clustering with 

but we also changed the basic structure of the algorithm as we went through different tree 

iterations. 

 

2.3.1 Milestone 

 

For the milestone we just implemented a simple clustering which took the maximum of each of 

the detected mug bounding boxes’ coordinates.  This was effective and simple and since we were 

using the easy video worked well, but there were limitations that we wanted to improve on.  We 

limited the output to one object per frame with this technique. 

 

2.3.2 Requiring Object Overlap 

 

The next attempt that we took at clustering for general object types was to check if the object 

overlapped with any of the other objects with the same label.  We threw away any object 

detection which did not overlap with a detection of the same object type.  This helped cluster the 

decision tree output into regions of high probabilities.  Thus this made it much more likely that we 
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would actually have an object at the output detection position since it had many initial 

overlapping detections.   

 

To implement this, we iterated over each of the frame’s object detections and checked to make 

sure it overlapped with another object detection of the same object type.  We discarded any 

frame that did not overlap with another object of the same type. We also had a variable 

threshold, which we tweaked, specifying how much shared detection box area was required to 

call multiple stacked detections an overlap.  Then we averaged all of the bounding boxes of the 

resulting objects of the same type and clustered the output into one detection.  We decided that 

it would be better to have this restriction in.  This strategy was effective in reducing random 

object detections but we were checking every object detection with every other one so the 

clustering algorithm had an
2
 running time and was very slow.  We could run it with the classifier 

but when combining with other detectors we didn’t think that it would be feasible. 

 

We decided to limit the output results to have at most one object of each type per frame.  We 

wanted to have cluster based on the location of the object so that we could bypass this limitation.  

However we decided to spend the time improving our decision tree classifier to have a steady 

output detection.  The clustering was closely tied to the decision tree and we wanted to have a 

stable decision tree before we started to implement more clustering.  

 

2.3.3 Average Object Overlap 

 

An idea for improvement for the running time I had was to take the average of each of the object 

detections of the same labels and see if each which objects overlapped with this mean.  We would 

keep the ones that intersected by some specified amount with the average and discard the rest.  

This improvement improved the n
2
 running time to linear and allowed us to better focus the 

cluster on one area, since before there could be two major clusters in the required object overlap 

method that might be averaged.   

 

We also came up with some ideas to implement a multi-cluster detection algorithm rand were 

going to implement it but realized that our time would be better spend fixing the decision trees.  

We decided to leave in the average clustering in the end for our final project.  The method was 

simple yet still effective.   Also this gave us time to run more advanced classifiers on the frame. 



 

12 

 

 

 

 

2.4 Correlation: A different feature approach 

 

2.4.1 Intuition 

 

We had the intuition that given an image I of the object O we want to detect in a frame F, 

convolving I with F should give us the brightest values at the points where image I of object O 

exists in the frame. We figured out the OpenCV function cvFilter2D and used that initially. Later 

however we just used the conv2 function from MATLAB to test lots of hypotheses quickly. 

 

So we tried making templates by taking small distinctive patches of images we wanted to detect 

in another larger image, and convolved the template with the larger image. We did get bright 

patches at where the template was located in the larger image, but we also got a whole bunch of 

other bright images. 

 

We created 10 templates to start with – 2 from each different object. We convolved each one 

separately with a frame image that contained the objects. We tried to detect patterns but nothing 

seemed to occur.  

 

One consistent problem was that frame images that were already pretty bright because of the 

light in the frame, resulted in more bright patches in the convolved image. So we tried to make 

the template image intensities sum to zero. To do this we subtracted sum(template intensities) / 

(number of pixels in template) from the intensity of each pixel in the template. But this made the 

template image look very bad. And while there were some cases where this seemed to help, there 

were others where this made detection much worse. 

We also tried making the frame image intensities add up to zero in a similar fashion, but did not 

get much out of it. 

 

One of us discussed the idea with Ian, and he emailed us some suggestions. His first suggestion 

was that we pre-flip the patch (because the convolution function flips the kernel). His second 
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suggestion was that we compensate for the fact that the convolution is going to be brighter when 

the image is brighter, so we should subtract out the part of the image that the kernel covers. We 

tried his second suggestion and subtracted out the mean of the part of the image the kernel / 

template covered. While we felt that the resulting convolved images did probably get better, 

there was still no pattern to the brightness patches. They were all over the place. 

 

After doing research on links Ian gave us and on Wikipedia, we saw that it was Normalized Cross 

Correlation, not convolution, that we should work on. Now, we needed to figure out the OpenCV 

function that would do this for us. The document at 

http://www.seas.upenn.edu/~bensapp/opencvdocs/ref/opencvref_cv.htm#cv_imgproc_filters 

helped a lot. We found out that cvMatchTemplate has a couple different ways of performing the 

kind of template image matching we desired. 

 

We ran tests with all six method types. Out of the six, three seemed to work nicely – 

CV_TM_SQDIFF_NORMED, CV_TM_CCORR_NORMED,  CV_TM_CCOEFF_NORMED. We decided to 

choose CV_TM_CCOEFF_NORMED as the method we would use. Using this, we now needed to 

find the maximum intensity pixels in the image. We used cvMinMaxLoc to accomplish this. 

 

2.4.2 Data Structures and Implementation 

 

We now needed a framework to actually collect good image templates, and then load and test 

them on the frame images. 

 

The data structures we created are as follows: 

vector<string> ScissorTemplates; 

vector<float> ScissorTempThresh; 

vector<CvRect> ScissorRect; 

vector<string> ClockTemplates; 

vector<float> ClockTempThresh; 

vector<CvRect> ClockRect; 
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vector<string> KeyboardTemplates; 

vector<float> KeyboardTempThresh; 

vector<CvRect> KeyboardRect; 

 

and similarly for Mugs and Staplers ( although we never used them for the final submission 

because they did not work too well ). 

 

For example, the Keyboard Detector: 

� KeyboardTemplates is a vector of strings that stores the names of the image template 

files to be loaded and correlated with the frame images. 

� KeyboardTempThresh is a vector of floats that stores the threshold above which the 

correlation of the image template in KeyboardTemplates at that index, with the frame 

image, would be considered a positive i.e. would correspond to a keyboard. 

� KeyboardRect is a vector of CvRects that stores the relative dimensions of a CvRect for the 

object detected, for the image template at that index. 

 

A lot of image patches were tried as templates on the four videos available to us. We chose a few 

templates for each object that seemed the best – they were general enough to detect the object 

in most of the videos. 

 

Next, we tried to minimize the number of false positives detected. So we ran tests with our 

template images and printed out the correlation number. We chose the correlation threshold to 

be a number that was high enough to minimize false positives. 

 

Next, we set CvRects for the template features we were detecting. Since we knew what part of 

the object each template feature was, and what part of the object it would be detected at, we set 

what would be the CvRect around the point of maximum brightness, if the image correlation was 

positive. 

 



 

15 

 

 

So, for each frame, we match it with all the templates of all object types we have. We compare 

the correlation number to our threshold and determine if the correlation is positive. If yes, we 

look up the corresponding rectangle that should be drawn on the frame relative to the correlation 

point i.e. point of brightest intensity in the correlated resultant image. 

 

Even with only about four or five templates per object, the correlation worked pretty well for the 

Keyboard and the Clock, followed by the Scissor. If we had added many more templates, it would 

work even better. We did not see it working very well for the Mug, except that it worked for the 

mug’s handle. But the templates also confused the mug handles with the right hand side of the 

clock. We did not see the Stapler too promising either. So we decided to only let the Keyboard, 

Clock and Scissor detectors remain. 

 

 

2.5 Optical Flow: Choosing output based on motion 

 

We decided to implement optical flow to help track the objects from one frame to the next and 

help eliminate frames.  We initially wanted to use this to filter out frames which didn’t move in 

the same direction as the flow and then decided to use it to add frames in based on the 

probability of the previous frame detections.  On the process to our final implementation, we 

went through several design iterations of optical flow.  The major design tradeoffs we were 

focusing on the frame processing time limit.  We were concerned with the running time versus 

the accuracy of optical flow for each specific object. 

 

2.5.1 1st Implementation 

 

First we used a basic Lucas and Kanade optical flow algorithm which computed the flow for every 

pixel of the image.  Initially this seemed like the best method, as we were getting the flow for 

every point in the frame, which meant that we could get the flow for every object, but then we 

realized this was excessive.  The reason was that nearly all of the objects in the video were 

stationary so that the flow for the frame was the same as the flow for each object.  The exception 

was when the camera zoomed in or out.  Thus we just averaged the flow from each pixel to get 

the flow for the whole frame. 
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2.5.2 2nd Implementation 

 

Since we were just averaging all of the flow vectors of all of the pixels of the first frame, and the 

objects were mostly stationary, we decided that we didn’t need to calculate the flow for every 

single pixel in the frame.  We decided to use another implementation of flow which would be 

more efficient given our assumptions.  So, we moved to the sparse optical flow calculated by the 

iterative Lucas-Kanade methods in pyramids.  We based this optical flow implementation on the 

notes by David Stavens (TA for CS 223B) who explained a method to do this.  We used the 

OpenCV sparse flow function to calculate the optical flow and to calculate the points to track in 

the flow we used a function which found the strong corners in the frame using the Shi and Tomasi 

method.  This way we didn’t have to calculate optical flow for every pixel in the frame.  Also since 

we had most of the objects staying in the same position relative to each other, this was not a 

problem and since we had multiple points we could even figure out zooming.  

 

2.5.3 3rd Implementation 

 

Instead of using the Shi and Tomasi strong corner detection method we decided to just choose 

parts of the strong clustered objects in the previous frame to track.  With this we realized that we 

can pass in the parts of objects that we wanted to track specifically and use these as the points for 

calculating optical flow on.  This method is much more efficient thank the first method and more 

flexible than the second since we only calculate flow on the points that we actually need to 

monitor.  This also allows us to use either the observations from before or the final output from 

the previous frame.  

 

In the end we disabled optical flow for the final submission since we wanted to make sure that it 

wouldn’t actually perpetuate a false positive.  We hoped to get a strong confidence on a tree 

before we activated the optical flow so that it would follow correct observation.  In the end the 

optical flow computed quite quickly, especially compared to the clustering, and the flow vectors 

were relatively small since the camera didn’t move quickly.  Thus even though the flow wasn’t 

enabled in the final project, it definitely was a learning experience and was interesting to see how 

we could actually apply the optical flow algorithm to the image tracking problem. 
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3 Final Performance: Strengths and Weaknesses 

 

3.1 Final Decisions 

 Finally, we decided after many experiments and tests that we were going to use the 

boosted decision trees with the custom Haar features, the integrated correlation classifier and 

detector, and the clustering.  We fed the milestone Haar features for the mug classifier, instead of 

the features that we generated, into the boosted decision tree (more explanation in 3.2 

experimentation).  We also weighted the final keyboard and scissors correlation detector to count 

as 10 individual frames of the decision tree detection system.  Since we trained the correlation 

classifier to have very few false positives, we assumed that if it classifies something then the 

classification it is most likely correct.  Also the clock correlation classifier was very good but it had 

some false positives, so after multiple tests we decided not to boost its weight and just count it as 

one object detection.  We used the quick average clustering method in the end.  We left on all of 

the object classifiers from the boosted decision trees. 

 

3.2 Experimentation  

 We carefully experimented with the parameters for the Haar feature decision trees for 

both our trees and the boosted ones.  We carefully tweaked the image ratios and the maximum 

tree depth cut off to see which trees would give us the best output.  Surprisingly we found out 

that the provided mug Haar features for the milestone performed exceptionally well compared to 

the mug Haar features that we had trained.  Also the various decision tree and Haar feature 

training image ratios gave very distinct numbers of object detections. 

Without boosting ratio 50 and depth 10 worked best. 

With boosting using 50 weak learners / depth 5 

 

Ratio Number of Output Classifications 

10 Very High 

50 High 

100 Medium 

120 Low 
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We found that the boosted tree using the 1:100 ratio gave us just enough output classifications to 

find the object but didn’t overwhelm the clustering.  With the 1:10 and the 1:50 ratio, the entire 

frame was covered in detections.  With the 1:120 ratio, we didn’t have enough detections to 

cluster and still cover the actual object. 

 

We also found out that we were testing these parameters on a separate boosting file with the 

mug features.  When we actually consolidated the code with the whole project and implemented 

the boosted tree detection for all of the object types, for some reason there were very few object 

detections.  We found out that the images were sampled in a different way in the main code 

versus our milestone code, in the full project we took each image from the object and other 

categories with probably 1/ratio but with the milestone code we took the images from all the 

other object types first and then took the rest of the images necessary to have the correct 

positive to negative ratio from the others category. However even with changing this method we 

still didn’t have combined classifier outputting enough frames.   

 

To counter this we relied heavily on the correlation factors for the clock, keyboard, and scissors.  

We boosted the frame observation count of each keyboard and scissors detection from 

correlation.  The clock was accurately detected by the added correlation features, especially when 

it found all three features, so we focused on this more.  Ideally we would have tweaked the 

decision tree and set a better threshold for score cutoff determining the boundary of 

classification between positive and negative samples.  However under the time crunch we had to 

make a strategy decision and use the correlation instead.  Ideally, we would love to have a 

decision tree that actually outputted more detections and especially one that we could rely on 

completely for our extensions. 

 

3.3 Final Results 

 

We implemented several extensions but couldn’t take advantage of many of them since our 

decision tree was unpredictable.  In hindsight, we should have established our decision tree 

earlier and then build extensions off of it.  This way we would have been able tune to the 

extensions better and have been able to produce a much better detector.  Also this would have 

given us time to play around with interesting ideas such as only using the decision tree for the 
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mug and anything else it was good at and using the other classifiers such as correlation for 

detecting the other objects. 

 

3.4 Conclusion 

This was a great learning experience in both science and team strategy.  We will definitely try to 

get the core functionality and algorithm working very strongly in the beginning before we add the 

extensions.  Also we will definitely start working on the project much, much earlier.  All in all, we 

had a great time and learned a lot while working on this exciting project!  We also developed a 

great appreciation for the amazing capabilities of the human body! 

  


